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Abstract

An acoustical model for consolidated sediments is used to study the reflection in
the ocean sediments. The problem of reflection and refraction of elastic waves incident at
the interface between an elastic basement and a sedimentary layer lying under a uniform
layer of liquid is studied. The sedimentary layer has been taken as transversely isotropic
liquid-saturated porous solid. The interface between the sedimentary layer and the elastic
half-space is taken as imperfect interface and appropriate boundary conditions are defined
there at. The assumptions made are justified at most frequencies of practical interest in
underwater acoustics. The reflection and refraction coefficients have been obtained and
studied for different degrees of bonding of the sediments-basement interface for all angle

of incidence.
Introduction

The bottoms of ocean are usually
covered with a variety of sediments. The
influence of the bottom sediment on the
propagation of acoustic, gravity, or
seismic waves becomes important when
water depth is comparable to the
wavelength of the waves. Sometimes, the
sediment is considered as a fluid or an
elastic solid with a small rigidity but the
mechanics of marine sediment is
complicated because sediment is coupled
multiphase medium: the solid phase of
grain and the fluid phase of the pore
water and gases. It is further complicated
when effects of imperfect elasticity of
the skeletal frame are also considered.
The problem of describing
seismic/elastic waves propagating in the
ocean over a porous sea bed is of interest
for  geophysicist,  engineers  and
acousticians for a variety of reasons. In
some cases, interest is focused on low-

frequency waves of large amplitude e.g.
those waves which arise near the source
of an earthquake. At other times, the
main interest is in waves of low
frequency and amplitude that have
traveled long distances through the
sediment. In another category, high
frequency waves that are able to resolve
thin layering and other fine structural
details are of interest in studying bottom
topography and near bottom sediments.
Biot (1941, 1956a, 1956b, 1962a,
1962b) published a series of papers on
the theory of elastic wave propagation in
saturated sediments. The theory suggests
that two kind of dilatational waves
propagate in a fluid filled porous
medium with inter connected voids. The
wave of the “first kind” is similar to the
usual dilatational waves in an ordinary
elastic body except that there is small
amount of dispersion and some
attenuation that depends on frequency.
On the other hand, the wave of the
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“second kind” is a low-velocity, highly
attenuated wave with marked dispersion.
Very little energy is converted into
waves of the *“second kind” in water-
saturated sediment because of the
relatively low compressibility of the pore
water compared with the skeletal frame.
Existence of slow compressional waves
at frequencies much higher than the
relaxation frequency was observed in the
fused glass beads by Plona (1980).
Chotiros (1995) has also claimed to
detect the “second kind” of dilatational
waves which propagate with a velocity
near to 1200m/s in the bottom sand.
Different studies have been made
on the wave propagation in porous media
on the basis of Biot’s theories. A
mathematical model, based on Biot
theory, that takes into account both
ingranular losses and viscous losses in
the interstitial fluid of the saturated
sediments has been proposed by Stoll
and Bryan (1970) and used by Stoll
(1974, 1977, 1979, 1980) in his different
studies on propagation and attenuation of
acoustic waves in sediments. Stoll and
Kan (1981) studied the reflection of
plane acoustic waves at a water-sediment
interface. Many problems on acoustic
waves in saturated or unsaturated
sediments have been studied on the basis
of the Biot theory. The effects of the
sediment properties on the dispersion
and the attenuation of acoustic waves
were examined by Yamamoto (1983) in
the study of acoustic normal modes in a
homogeneous ocean overlying a
homogeneous porous elastic bottom half-
space. Collins et al. (1997) investigated
that some ocean sediments may be
modeled as poroelastic media with
relatively high speed of slow dilatational
wave and relatively low speed of shear
wave. The scattering of acoustic waves
from a gassy poroelastic seabed was

studied by Boyle and Chotiros (1998).
The asymptotic formulae for attenuation
coefficients and sound speed in ocean
sediments were given by Badiey et al.
(1998) for high, low and intermediate
frequencies. Buckingham (2000)
developed a linear theory of wave
propagation in saturated, unconsolidated
granular materials including marine
sediments. Two type of shearing,
translational and radial, which occur at
grain contacts during the passage of a
wave, were considered in this study of
stress-relaxation mechanism in saturated,
unconsolidated marine sediments. Liu et
al. (2001) studied the effects of acoustic
properties of seabed, including the
density and sound speed of the
sedimentary layer and sub-bottom, on the
wave field characteristics.

Many researchers studied the
reflection and transmission phenomena
in fluid saturated elastic solids. The
reflection loss during acoustic wave
scattering from solid boundaries at the
ocean bottom was calculated by Kuo
(1992). The mode conversions during the
reflection and transmission of seismic
waves at the boundaries of porous media
were studied by de la Cruz et al. (1992).
Badiey et al. (1994) studied the wave
reflection from inhomogeneous
anisotropic poroelstic seafloor by using
propagator matrix method. The reflection
and refraction at a plane interface
between fluid and non dissipative porous
solid was studied by Sharma (2004b).
Lin et al. (2006) discussed the surface
displacements, surface strain, rocking
and energy partitioning during the
reflection of waves in a fluid saturated
poroelastic half-space. Recently,
Chotiras et al. (2007) studied the
refraction and scattering into sandy
ocean sediments and observed the sound
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penetration from acoustic wide band
array buried into a sandy sediment.

The fluid saturated geological
materials show anisotropy in their elastic
properties and permeability due to
bedding, compaction and presence of
aligned microcracks. Sharma and Gogna
(1991) studied the propagation of
Rayleigh waves on the surface of
transversely isotropic liquid saturated
porous  layered medium.  Wave
propagation in an anisotropic
periodically multilayered medium was
discussed by Potel et al. (1993). Three
dimensional mathematical models for
propagation of four quasi-waves in
general anisotropic fluid saturated porous
solids were developed by Sharma
(2004a, 2005). Vashishth and Khurana
(2005) analyzed the Rayleigh modes in
transversely isotropic  heterogeneous
poroelastic layers.

In order to model sedimentary
bottom in a realistic way, the anisotropy
of their physical properties should be
taken into account. In this paper, we
study the reflection and refraction of
seismic waves at a boundary between
elastic half-space and porous layer which
is underlying a liquid layer. This model
corresponds to homogeneous ocean with
a poroelastic bed overlaying the elastic
basement. The sedimentary layer is
considered as transversely isotropic. The
problem stated above has not been
studied so far and this is of interest not
only for theoretical work but also for
practical applications. Layers of porous
solids, such as sandstone or limestone
etc., saturated with oil or ground water
are present in the oceanic crust and are of
interest in geophysical exploration

Formulation of the Problem

We consider a model consisting
of a homogeneous ocean of depth h, an
elastic half-space and a sedimentary
layer of thickness H between ocean and
the half-space. The sedimentary layer is
modeled as a homogeneous, transversely
isotropic liquid-saturated porous solid
layer and the half-space is taken as
homogeneous, isotropic elastic medium.

Basic Equations and their Solutions

The equations of motion for a
porous solid (Biot; 1956 a, b) are

i = pU; + e W, (i,j=12,3)
cyer

_(pf),i:pf U + Wi+FbiWi’ (1)

where z; is the stress tensor, p, is the
pore fluid pressure, p,andp are the
mass densities of the fluid and the bulk
porous material respectively. S is the
porosity of the porous medium.
W = (U —u) is the relative velocity of
the fluid with respect to the solid and
Uand u are the displacements of the

liquid and the solid part of the porous
medium.

Coefficients b s are the friction
parameters and are

b = g/ki ' (2)
where & and k; are the viscosity and
permeability of the pores fluid. Function
F(x) is a frequency dependent viscosity
factor, which is defined as

F(x) = kT (x) |
4{1-2/ () T(x)}
T(x)= ber’ (x) +lb€i-’ () |

ber (x)+1 bei (k)

k=a(wp, &), 3)
where ber (x) bei(x) are the real and
imaginary parts of the Kelvin function
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and for cylindrical pores, the
permeability is given by (Biot, 1956 b)
ki=(8/a?)s, (4)

where & is the pore size and &, is a

shape factor and its value is one for the
circular cylindrical pores. The constants
¢, in equation (1) account for the added

mass of the fluid associated with its
motion relative to the solid. In the case
of straight pores, the added mass is
negligible and both the constants are
unity.

The constitutive equations for a
transversely isotropic porous medium
(Biot, 1962 a) are given by
T, =2Be, +B,(e,+e,)+B,e, +B <

7, ZZBleyy+Bz (eXX+eW)+BSeZZ+B6§

XX y24

r,=B,e, +B;(e,+e,)+B, &,
r,=2Be,,
r,=2B.e,,
7, =2Be,,

pf :BG (exx+eyy)+B7 ezz+B8‘}::1 (5)

where e, ,e,,etc.and 7,7 ,etc. are
the components of the strain tensor and
stress tensor respectively., & is the

increment of the fluid content per unit
volume which is defined as

g=div[g (u-U)]. (6)
There are eight material coefficients
B,,B,,...., By in equation (5), which are
to be evaluated by applying the method
developed by Hashin and Rosen (1964)
and by Christensen (1979) for evaluating
the material coefficients of composite
materials. The equations, which relate

the coefficients B,,B,,...., B, to the bulk
modulus (K,), shear modulus (),
Young’s modulus (E,), and Poisson’s
ratio (v,) of the solid grain and the bulk
modulus (K,) of the pore fluid, and to

XX

the porosity (f) of the medium, are
given by

B, = 4,,

B, =Ky, — 4,

B, =20, Ky,

B, = Egs +405; Ky,

B, =1/u;,

K, (K, +4,/3)
K+ B(K +u 3-K,)]

2v (K, -I-,I,ts/3)—Kf
Kf +lus+ﬂ(Ks+lus/3_Kf

B, =-K[1+(1- /) ]

_ Kf[(Ks+4:us/3)ﬂ+:us]
K + 4+ B (K + 1, /3-K,)
where

(72)

8

48(1-p)L/2-0,)

E.=(-pB)E
5 =1-5) s+(1_ﬂ)/Kf+ﬂ/(Ks+ys/3)+1/ﬂs

vy = (1= Blog+ B/ 2+
B A-5) (2-v)[1/(K, +4,/3)-1/K]
(l_ﬂ)/Kf +ﬂ/ (Ks +:us/3)+l/:us

Klz = Ks +:us/3+
p
V(K =Ky =, /3)+ (1= ) /(K +44,/3)

ths = (A=) QA+ B)}uss.
The term 4, is determined from the
equation (Christensen, 1979)

A (p,/ 1) *+ 2B (p1,/ 1) +C =0,(7b)
where

A=-3801-B) -, +p)1+Bn,),
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B=34(-f) +1-5)(n, 1+ 2°) /2
g(m +1)(1- )

C=-3p01-p)+1-p) -5,

n, =3—4u;.
Considering the two-dimensional wave
motion in the xzplane, the dynamical
equations leads to

o%u o°u o%u
2B +B)—*+B.—*+(B,+B z
( 1 2) axz 5 azz ( 3 5) axaz
oW, o'W,
Bs o - B %Gz =pu,+p W,
o°u o°u o
B, +B *X+B Z+B Z
(B, 5)8x82 *ox2 ' ozl
o'W, o'W,
B, Xz -B 522 =pu, +p; W,
Uy g O W, o OW,
®oxt Toxoz P ooxt P oxoz
C
—Ps ux _17hWx_Fb1Wx
B ou, ou, o'W, o'W,
5 +B,—-B; —Bg—/==
OX0z 0z OX0z 0z
C; P
—Ps uz_ Sl Wz_Fb3Wz

8
We assume the plane wave solutions of
equations (8) in the form

u,=A explio(t-x/c-qz)],

u, = A, expliw(t—x/c—qz)],

W, = A, explio(t—x/c—qz)],

W, = A, exp[io(t—x/c—qz)] 9)
Equation (8) and (9) leads to

{p-B,q’ —(2B,+B,) /c'}A -

(B, +B,)(a/c) A, +

(P +Bs/c*) A+ B (q/c) A, =0,

—(BS+BS)(q/C)A1+{p—B4q2—BS/CZ}A2+

B, (a/c) A +(p; +B,0%) A, =0,

(Bg/c*+p; )A+B,(q/c) A+
{-B,/c’+c, p,/ f—1Fblw}A -
Bs(q/c)A, =0,

Bs (a/C) A +(p; +B;0") A,—By(a/c) A+

{-B,q°+¢c,p, | B—1Fb,/w}A, =0.

1

The above system of equation poss(esozal
non-trivial solution ifdet[a; ]=0, (11)
where a;, the entries of symmetric
matrix of order 4, are

a,=p—-(2B,+B,)/c*-B.q°,

a, =a,=—(B;+B;)(q/c),

A3 =dy = Py +B6/C2’

Ay =y = Be(q/C)1

Ay :p_Bs/CZ_BA(:]z’

A, =3, =B, (q/c),

Ay =3, =p; +B, q2’

a,=—-By/c’+c p, I B—1Fb /o,

&, =3, =—B;(q/c),

a,=-B,q°+c, p, | B—1Fb,/w.
The above equation is a cubic in g* and
can be written as

T,9°+T,q"+T,9°+T, =0, (12)
where

To=¢, B (B72 -B, Bs) '

T,=T,+T,/c?,

T,=T, +T,,/c?+T,/c,

T, =T, +T,/c*+T,,/c*+T, /c°,

T,=c¢, (B, BB_B72),D+C11PB5 Bs +

2¢,, p; Bs B, +C; €53 B, By +pf2 ( B72 -B,B;),
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T,=c¢,(2B,+B,)(B,*-B,B;)-
Cy; B, BBy +Cy; BB, +
011(832 B;+2B,B.B;)—
¢, B, (2B,B, +2B,B, - B, B,),

T,=-C,p°B,—2c, pp; B, -

Ciy Co P (B +By) +Cyy p” By +

Cy ;" By +pp " By +2p,° By,

T,,=p(Cc, BBy +Cy;y B, By) +

¢, p(2B,+B,)B,+2c, p; B,(2B,+B,)-
C3 0B,2+C,Cyy B, (2B, +B,) +Cyy p B, By —
4p.?B,B,—2p, (B, +B,)(c, B, +Cy;B,)—
2p.2B,B,—C,Cy; (B> +2B,B,)+

2¢,, p; B, B, +2p,°B, B, —c, pB’,

Ty, =Cs3B,° (2B, + B,) +
C33(Ba + Bs){BaBa _28687) -
(CllBS +Cy B4 ){(2 Bl + BZ)BB y Bez}
Ty =P Cy Cy—p i ° (Cy +C3) + pi %

T,, = pCyfCy (Bs +2B, + B,) — pBy —2p( B} +

pfz{sz +2p;Bg +¢, (2B, +B,) +Cy3B:},

Ty =CypBy(Bs +2B, +B,) +
C1C4sBs (2B, + B,) + o, 2{862 —B;(2B, +B,)}
+C33Bs{20; B; — pB;},

Ty, =Cyg Bs{Bez_Bs(ZBl"'Bz)};

G Py Fb
11—7—17’
c
O L ML (13)
S @

The roots of the equation (12) are, in
general, complex. We denote these roots

by q(n), n=12,....,6. Three roots with
positive real parts will correspond to the
waves traveling in the positive z-
direction (downgoing waves) and other
three roots with negative real parts will
correspond to the waves traveling in the
negative z-direction (upgoing waves).
We order the Six roots
q(n), n=12,...,6 such that
q(@), q(2), q(3) correspond to upgoing
waves and q(6), q(5), q(4) correspond
to the downgoing waves. These are
quasi P, quasi P,,and quasi SV waves

respectively.  Substituting  q(n) into
equation (10), the wave amplitudes
A,A, A ,and A, can be obtained. We

denote the corresponding normalized
eigen vectors by
A(n), (i=1,2,34,n=12,....,6).

These are given by

A () =X, (n)/X(n),
Ay (n) = X5(n)/X (n),

A, (n) = X, (n)/ X (n),
A4(n) = X4(n)/x (n)1
where
X,(n)=q*(n)c, (B, B,—B,*)+
qz(n){Bg(Bs c,+B, C33)/02 —C, By p—
2¢, p; B+, (C,B, — B2 /cy)}+

B
{Cgsc—f( B, /c? — p)—C,,Cys(B; /C° — p) +

pf2(88 /c? +¢,)}

C
X,(n) = qs(n)%{BGB7 —B,By — BB} +

n
y{[& (o; + By /CZ) —By(B, + B5)/CZ]C33 +

€104 Bg +pf288 +C,,C53(B; + Bs)}
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X4(n) =q*(n) p; (B," ~B, By) +
q°(n){cy B, (o +B,/c?) -

(c3 B, +p, By)(B,+B;)/c” +

P By (p—B,/c?)+

p: B, (p; +B,/c*)+B, p.° }+

(pi +Bg/c*){p* —cy (0—Bs / %)},

3
n
X4(n) :qT(){C11(B4Ba - BSB7 - BsB7) +

n
(B,B; - B72)pf}+¥{_cﬂpf (B; +B;) -
C,y(p— B, /C*)B, + p; By(B, +2B;) /c” —
ppP:By—p; B, (pf +B, /CZ)}y
and

X(n) =
J X M) + (X5 ()2 + (X5 ()2 + (X, ()

The  constitutive equations  for

homogeneous, isotropic elastic solid are
c,=A0+2ue,,
o, =10+2uc¢,,

o, =2u¢
where &

X!

&, etc. are the components

XX

*

of strain tensor; o, ,o,etc. are the

components of stress tensor; and & is the
dilatation. Substituting these equations in
the equations of motion

Cii =P U,

o

The equation of motion in the elastic
solid half space is

*

O°W
OX0Z

82u*+ ou”
Ox? a 0z°

(A+2p) +(1+p)

*

*

728

ow .
a2 P W
(14)
and
are

82u*+ o°wW’
oxoz H Ox?

(A+p) +(A+2p)

where u” and w are tangential
normal displacements, A and u
Lame’s constants and o is the density.
When we consider
u =Aexpliw(t-x/c-qz)],
W =Aexpliw(t-x/c-qz)],
then equation (14) becomes

(15)

[(A+20)1C + 40" = 1A + (24 1)L A; =0

() LA 4Ll + (A4 20 - p*] A, =0
(16)

This leads to a quadratic in q°, which is

Aq*+Bg°+C" =0, (17)
where

A =(A+2u) u,

B ' =2u(A+2u)/c®—p (A+3u),
C =u(A+2u)c* —p (A+3u)/Ic?+p°
We denote the four roots of the equation
(17) as q’(n), n=1,...,4. Out of the four
roots q’(n), (n=1,2,...,4) we assume that
q (1) and q°(2) correspond to
P and SV waves propagating in the
negative z-direction, and
q (3) and q"(4) correspond to
SV and P wave propagating in positive
z direction. Substituting the values of
g (n) in the equation (16) and solving
for A and A;, we obtain

A =K (n)/K"(n), A =K;n)/K"(n),
(18)
where
K; ()= ulc® +(A+2u){q" (¥ - o,
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Ko(n)=—(2+u)q Ic,
and

K™ (n) = {K; (Y +{K; ()Y,

n=1, 2, 3, 4.

Similarly, writing solutions

u'=Aexpliw(t-x/c-qz)],

W =Aexplio(t-x/c-qz)], (29)
in the liquid layer, we obtain

q) =+ ~adlai, (=1, 2)

(20)
and their corresponding normalized
eigen vectors A/(n) and A;(n).

Reflection and Refraction of plane
waves

We assume that incident wave
(P or SV wave) travels in the elastic

basement and impinges on the surface of
sediment layer at an angle 6,. In the

sediment layer, the waves are reflected
many times by the ocean sediment
interface and the sediment-basement
interface. In the liquid layer, the multiple
reflections at the free surface and the
ocean-sediment interface create the wave
field composed of wupgoing and
downgoing compressional waves.

The displacement components associated
with the incident and reflected waves in
the elastic half-space can be written as

u” :ZZZA;(n)exp[m)(t—x/c—q*(n)Z)]+

ZAI(H) f(n)explio(t—x/c-q'(n)z)],

w :ZZ:A;(n)exp[za)(t—x/c—q*(n)Z)]+

ZA;(H) f*(n)exp[io(t—x/c-q'(n)z)],

(21)
where f”(3)and f"(4) are the relative
wave amplitudes of reflected SV and
reflected P wave respectively. For
incident P wave,

A (2)=A(2)=0,
and for incident SV wave,
AD)=A@1)=0.
In the liquid layer, the displacement
components corresponding to upward
and downward traveling P wave can be
expressed as

u' = zzle'(n) A(n)exp(to(t—x/c—qg'(n)z)]

w = ie'(n) A (n)exp(tw(t—x/c—q'(n)z)]

(22)

where e'(l)ande’(2) are the relative
amplitudes of upgoing and downgoing
P wave in the liquid layer.
The displacement components
associated with upgoing and downgoing
quasi body waves in the transversely
isotropic porous layer can be written as

Uy =Zg(n)A&(n)exp[lw(t—X/C—OI(n) 7)]

6

u, = > 9(n) A (n)expliw(t—x/c~q(n)z)]

W, =Y () A explut-x/c-a(m )]
W, = g(n) A, (n)expli(t - x/c—g(n)2)]

(23)
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where g(1), 9(6); 9(2), 9(5); 9(3), 9(4)
are relative amplitudes of upgoing and
downgoing transmitted quasi
P; P, and SV waves respectively.

The wave number k is given by

[0 w .
k=—=—7siné,, 24
c vV, 0 24)

where 6, is the angle of incidence and
V, is the velocity of incident wave.

Boundary Conditions

The boundary conditions at the
free surface (z=-h) and porous fluid
interface (z=0) are

) p'=0, at z=-h,

. , ou'"  ow

i) 7,,=-p =—/10(8X + e ),at z=0,

i) z,, =0, at z=0,

iv) p,-p'=¢W,, at z=0,

V) u,+W,=w' at  z=0.
(25a)

Vashishth et al. (1991) discussed
boundary conditions at an imperfect
interface. Treating the boundary between
porous layer and elastic half space as
loose boundary, the boundary conditions

thereatie.at z=H are
vi) 7,,=0,,

vil) 7, =0,,

viii) u, =w’,
ixX) W =0,
* W ILI *
X =10 — | — (u —-u,),(25b
) oy lw(l—l//jVo ( «)(25b)

where p’ is the liquid pressure, A, is
Lame constant in the liquid layer. ¢ is a

kind of surface flow impedance and its
value is zero when the pores are open
and ¢ is infinite for the seabed pores.

is the bonding parameter whose value

lies between one and zero and is one for
welded interface and is zero for smooth
interface.

Substituting  the values of the
displacement components from (21) to
(23) into the above boundary conditions
and making use of (5) and (15), we
obtain a system of linear non-
homogeneous equations in ten unknowns
and these can be expressed as

XZ=Y, (26)

where Xis a square matrix of order 10
and Y and Zare column matrices. The
elements of the matrix X,YandZ are
given in the Appendix A. The system of
equations (26) can be solved to obtain
the ten unknowns zj(j =12,...,10).

These are the amplitude ratios of
reflected and transmitted waves.

Numerical Computation and
Discussion of Results:

For numerical calculations we
take a particular model and its
parameters are given below. For the
water layer, the values of the density,
elastic parameter and compressional
wave velocity are taken as

p'=1.025gm/cm®, A, =1.92dyne/cm?,

a, =1.37x10° cm/sec.

The physical properties of the sediment,
which is taken as water saturated
medium sand, are given (Yamamoto,
1983 b) by

K, =3.0x10° dyne/cm?, iz, =1.0x10° dyne/cm?,

v, =0.35, E, =2.7x10° dyne/cm?,

p, =2.65gm/cm®, p, =1.025gm/cm?,
K, =1.92x10" dyne/cm?, B = .45,

£ =1.025x10"* dyne —sec/ cm?,

¢, =C, =125k, =k, =1.0x10°cm?,
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The parameters of the Bedrock (elastic
half-space) are

p =2.6gm/cm® A =25x10" dyne/cm?,
1 =3.75x10" dyne/cm?.

Using these wvalues of the
parameters for liquid layer, sedimentary
layer and for the elastic half-space, the
equation (26) is solved numerically to
determine the amplitude ratios of
different reflected and refracted waves.

Fig. 1 and 2, show the amplitude
ratios of reflected Pand SV waves for all

angle of incidence and for different
degrees of bonding of the interface
between elastic half-space and porous
layer. It is evident from the figures that
mode conversion does not take place. It
is also clear that the effect of looseness is
more predominant for the SV wave as
compared to P wave. At the normal
incidence and for small incident angles,
the looseness of the interface affects the
reflection coefficient of shear wave
significantly. Fig. 3 to 8 shows the
amplitude ratios of the three upward
traveling and three downward traveling
transmitted waves. It is evident that the
bondedness of the interface influences
the reflection-refraction  phenomena
except for angles near the grazing
incidence, as excepted. The amplitude
ratios of upgoing transmitted P, wave

and SV wave increase with the
bondedness of the sediment-basement
interface while those of downgoing
waves decrease as the bondedness
increases. For the P,, wave, the behavior

is different and the amplitude ratios for
both upgoing and downgoing waves
increase with the bonding parameters
(Fig. 6 & 7). It is also noted that the
amplitude ratios of upgoing

P, and SV waves are greater than the

corresponding  downward  traveling
waves. The less energy goes into the
slow compressional waves in comparison
to the other waves. The amplitudes of the
compressional waves propagating in the
positive and negative z-direction in the
liquid layer are shown in the Fig. 9. The
amplitudes of upward and downward
going P waves in the liquid layer are
exactly same (Fig. 9). The bonding
parameter (w) of the porous layer-
basement interface show a little effect on
the wave in the water.

The critical angle for this wave is
at about 37°. Amplitude ratio of reflected
SV wave decreases with the angle of
incidence as the angle of incidence varies
from 0" to 34" and then starts increasing
as the angle of incidence approaches
critical angle. It is also clear from this
figure (11) that the amplitude ratio
decreases with the decrease in bonding
parameter. It is clear from Figs. 12 and
13 that the amplitude of downward going
P, wave is more than that of upgoing

wave in the sediment. The amplitude of
both the waves increases with the angle
of incidence. The amplitude of upgoing
P wave decreases as the bonding

parameter varies from 1.0 to 0.5 but it
increases if the looseness of the
boundary increases further and attains
the maximum for an ideally smooth
interface. However, the amplitude ratio
of downward going P,wave shows a

continuous decrement with the looseness
of the bonding interface (Fig. 13). The
amplitude of upgoing PR, wave is

slightly greater than of corresponding
downgoing wave (Figs. 14 & 15). It is
evident from the Figs 16 and 17 that the
amplitude of downward going shear
wave is greater than that of upgoing
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shear wave.

The variation of the

amplitude ratios of SV waves is similar
to that of upgoing and downgoing P,
wave. The amplitudes of upgoing and

downgoing compressional waves in the
liquid layer are same (Fig. 18) and
increases with the incident angle. The

Amplitude Ratio

effect of imperfect bonding of sediment-
basement interface on the amplitude of

P wave in the homogeneous ocean
not significant.
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Fig. 1 The reflection coefficient of P wave atincident angles (0-80)
of P wave for the values 1.0, 0.75,0.5, 025 and 0.0
of bonding parameter
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of P wave for the values 1.0,0.75,0.5, 025 and 0.0
of bonding parameter
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Fig. 4 The of going P, wave atincident angles (0-80)
of P wave for the values 1.0, 0.75, 0.5, 0.25 and 0.0 of bonding parameter
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Fig. 5 The transmission coefficient of upgoing P, wave atincident angles (0-20)
of P wave for the values 1.0,0.75,0.5, 0.25 and 0.0 of bonding parameter
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Fig. 7 The fransmission coefficient of upgoing SV wave at incident angles (0-80)
of P wave for the values 1.0,0.75, 0.5, 0.25 and 0.0 of bonding parameter
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Fig. 8 The transmission coeficient of SV wave at incident angles (0-80)
of P wave for he values 1.0, 0.75, 0.5, 0.25 and 0.0 of bonding paramater
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Fig. 18 The refraction coefficient of upgoing and downgoing compressional waves in liquid layer
versus incident angle of SV wave for the values 1.0, 0.75, 0.5, 0.25 and 0.0 of bonding parameter

Conclusion:

A mathematical model for a
sedimentary  layer  underlying a
homogeneous ocean and overlaying an
elastic basement has been proposed to
study the reflection-refraction
phenomena. To make the study more
realistic, the loss of energy due to the
relative motion of the pore-water to the
sediment frame has been taken into
account and the sedimentary layer was
treated as a transversely isotropic porous
solid saturated with water. The
partitioning of energy at the sedimentary
layer-basement interface is greatly
influenced by the imperfectness of
interface. The sediment-basement
interface is assumed to be a loosely
bonded interface and the results for
welded and smooth contact have been
obtained as particular cases. Amplitude
ratios of all the reflected and transmitted
waves have been computed. The effect of
the loose boundaries on the amplitude
ratios has been studied. The calculated
results reveal that the sediment beds and
the ocean have some influence on the
reflection of seismic waves at the
sediment-basement interface.

Appendix A:

Xy ={A(n)/c+ A, (n)q'(n) }exp[zewq'(n) h],
(n=12;k=n+8)

Xp =X =0,
X,; =B, A,(n)q(n)+B; A(n)/c-
B,[A;(n)/c+A,(n)a(n)],

(n=12,..,6; j=n+2)
o == [A(N)/c+ A (n)a'(n)],(n=12k =n+8)

Xqy = X =0,

X; =AM an)+A,(n)/c, (n=12,....6; j=n+2)
Xy =0, (k=9,10)

Xy =X =0,

X = Bs An)/c+B; A(n)a(n)+¢ A,(n) -

B [A(n)/c+A,(ma(n],

(n=12,....6; j=n+2)

Xgo = [AM)/c+ A (n)a'(n)].(n=12, k=n+8)

X51:X52:O’

X;=AM+AM), (n=12,..,6 j=n+2)

X5, =—Ay(N), (n=12,k=n+8)

X =[A A (n)/c+(A+2u) Aj(n)q (n)Jexp[~0q (n) H]

(n=3,4;i=n-2)

Xsj :_[B4A2(n)Q(n)+ BsAi(n)/C_
B{A;(n)/c+A,(n)q(n)}] exp[-twa(n) H],

(n=12,...6; j=n+2)

X =0, (k =9,10)

X = u{A (N)q"(n)+ A, (n)/ c}exp[-wq(n) H],

(n=3,4,i=n-2)

X;; =B {A(n)a(n)+ A,(n)/c}exp[-1@q (n) H],
(n=12,...,6; j=n+2)

X, =0, (k =9,10)

X = A (n)exp[-t@q (N)H], (n=3,4i=n-2)

X; =—A,(nN)exp[-1wq (N)H], (n=12,..,6; j=n+2)
X, =0, (k =9,10)
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Xg =0,

X; = A (n) exp[-rewq(n) H],

Xoi =[W A (M) +L-y)V {A (N g (n) +
A, (n)/c}]exp[-1@q (n) H],

(n=3,4,i=n-2)

X5 =—A(n) exp[-rwq(n) H],
(n=12,...,6; j=n+2)

Xior =0,

The elements of column matrix Z are

given by

Z = f*(S), Z, = f*(4), Z; = g(i-1),

(]=38,4,..,8),2, =€'(D), z,, =€'(2).

The elements of the matrix Y are

Y=Y, = :yszygzo’

Yo =—{AA (N)/c+(A+2u) A,(n)q (n)}
exp[-zoq (n) H]

y, =—u{ A'(n)g"(n)+ A, (n)/c}
exp[-zwq’ (n) H]

Ys =— A, (n) exp[-zwq’(n) H],

Yio =—[w A (n)+A-w Vo {A (g (n) +

A,(n)/c}lexp[-twq (n) H]
where n=1 for incident P wave and n=2
for incident SV wave.
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